
Slovak morphology analyzer based on

Levenshtein edit operations

Radovan Garab́ık

L’udov́ıt Štúr Institute of Linguistics
Slovak Academy of Sciences

Bratislava, Slovakia
korpus@juls.savba.sk

http://korpus.juls.savba.sk/

Abstract. Levenshtein edit operation is a basic string operation – in-
sertion, deletion or substitution of a character in a string. Sequence of
edit operations can be used to transform basic word form (lemma) into
an inflected form, and the same sequence can can be used to transform
lemmata belonging to the same inflectional paradigm. Presented system
contains inflection paradigms of over 56000 lemmata from Short Dic-
tionary of Slovak Language and from the most frequent word forms in
the Slovak National Corpus, together with detailed grammar information
about each generated word form.

1 Levenshtein distance and some definitions

Levenshtein distance[1] is a metric defined on the space of strings as a minimum
number of Levenshtein edit operations needed to transform one string into the
other, where by a Levenshtein edit operation we understand insertion, deletion
or a substitution of a character.

A Levenshtein edit operation e can be formally described as e = (o, s, d) –
a triple of operation type o, position in the source string s and position in the
destination string d, where operation type o is one of replace, insert or delete. For
replace or insert, the replacement/new character is taken from the destination
string.

Sequence of edit operations q = (e1, e2, e3, ...), together with the destination
string D, when applied to a string S ∈ S defines a mapping function f : S 7→ S,
where S is a set of all strings.

To each word form w ∈ W, where W is a set of all the words we can assign a set
of grammar categories Gw = {g1, g2, g3, ...} represented by short mnemotechnical
strings (called morphological tags).

Now for each tagged word form together with its morphological tag (wi, gi) ∈
W × G there exists a mapping function fi consisting of Levenshtein edit opera-
tions such that fi(l) = wi, where l is a deliberately chosen word, called lemma

and considered to be a basic word form for a given lexeme.



II Radovan Garab́ık

2 Technical implementation

Our system is really just a morphology generator – for each lemma known to it, it
is able to generate all the forms, together with their respective tags. By putting
all the forms and tags with information about lemma into a database[2], the
system is able to work as a morphology analyzer – we just look up the analysed
form in the database and find out corresponding morphological tag and lemma.

The system consists of two logically disjunct parts. One part is responsible
for creating tables of paradigm templates and lists of mapping of all the lemmata
into appropriate paradigm templates. This contains also helper programs used
by linguists to create, evaluate and modify these tables and lists.

The second part is meant for end users queries and is nothing more than
a simple wrapper around the database query library, to facilitate the lookup,
with some simple logic implemented to account for creating superlatives out
of comparatives (by adding the prefix naj-) and for creating verb negation (by
adding the prefix ne-, with the exception of the verbs ı́st’ and byt’),

The software is published under GNU General Public License[3] version 2
and can be obtained from the Slovak National Corpus WWW page1.

3 General principles

The system responsible for creating, testing and editing paradigms is written
completely in the Python programming language[4], paradigm editing and test-
ing is done using a simple CLI interface.

All the texts, input and output in our system is unconditionally in UTF-8
encoding[5], and all the internal logic of the system uses Python unicode strings.
Word forms in the tables are kept in UTF-8 encoding.

Since it is a suffix morphology we are interested in, we need to count the
position for Levenshtein edit operations from the end of the words, so that words
of different lengths but sharing the same suffix inflections can be declined by the
same paradigm template, in order not to inflate unnecessarily the number of
paradigm templates. This is easily realised by reversing the input strings before
applying the edit operations, and by reversing the output obtained as the result
– all done transparently to the users.

To keep the number of paradigm templates down we let our system work
in NFD Unicode normalization[6] internally, normalizing user input into NFD
before processing, and normalizing the output to NFC. This takes into account
changes in orthographic palatalization of the last consonant d, t, n or l, repre-
sented only by adding or removing the final háček (combining diacritical char-
acter in the NFD normalization), but in the more usual NFC normalization
it would have to be represented by changing the last character, and therefore
requiring separate paradigms for each consonant.

1 http://korpus.juls.savba.sk



Slovak morphology analyzer III

4 API

System contains three constant database tables:

– form2lemma.cdb – table containing word forms as keys and corresponding
lemmata as values

– form2taglemma.cdb – table containing word forms as keys and morpholog-
ical tags and lemmata as values

– lemma2tagforms.cdb – table containing lemmata as keys and morphological
tags and word forms as values

The constant database tables can be accessed directly, from any program-
ming language supporting tdb database, or converted into a convenient form.
However, the databases do not contain neither verb negation, comparatives nor
superlatives. Preferred higher level API written in the Python programming
language is contained in the module mlv_skling. The module has one public
class, Morphology, that takes during instantiation as an argument path to the
directory containing all the necessary morphology tables. Methods available are
form2taglemma, lemma2tagforms, get_stems and get_stem. form2taglemma
and lemma2tagforms analyze given word form or lemma and return tuple of
morphological tag and lemma, or morphological tag and form. get_stems ap-
plies simple stemming algorithm to the word and return a list of all possible
stems. get_stem returns just the first stem found.

5 Stemming algorithm

Stemming is the process of finding the stem (base or root form) of inflected
words, regardless of the existence of the stem alone – it is sufficient if the word
forms of the same lexeme map to the same stem, in order to facilitate full text
indexing and search. Usually, for full text query purposes, we are not interested
in the grammar analysis, and we want to maximize recall at the expense of pre-
cision. Our stemming algorithm uses lemma as the basic form, stripping vowels
following the rightmost consonant in the lemma, and in case of verbs, stripping
the infinitive suffix -t’ and then stripping the vowels. This collapses many near
homonyms to the same form, directly usable as the word stem.

6 Language coverage

At the time of writing, the database contains all the words from the 3rd edition
of the Short dictionary of Slovak language, with several thousand additional
most frequent words present in the Slovak national corpus, adding up to 56269
different lemmata (54315 unique lemmata, accounting for homonymy). These
lemmata are inflected by 1365 different paradigms, giving 601 253 unique word
forms and 1 616 379 different pairs of morphological tags and word forms.

An average tokenized fiction text contains 19 % of punctuation and other
nonword elements. On average, the analyzer covers 91 % of the remaining tokens,



IV Radovan Garab́ık

where 45 % of tokens are unambiguously assigned their morphology categories
and lemmata, 61% of tokens have unambiguously assigned lemmata, but not
morphological tags.

Stemming is markedly better, only 6.6 % of tokens cannot be stemmed unam-
biguously (and this is mostly due to rather frequent ambiguous words je, lemma
byt’ or jest’ and si, lemma byt’ or si) – in an information retrieval system, these
words would be probably included in the list of stopwords, further improving
unambiguity of the stemming.

7 Conclusion and future work

At the time of writing, vocabulary of the presented system is still being improved.
The next task will be to add most frequent acronyms, abbreviations and proper
names (toponyms and anthroponyms). Numerals will be taken care with the
help of additional module, exploiting their regular formation. To improve the
percentage of unmarked words in the analyzed texts, a “guesser” module will
be implemented, trying to find out the nearest appropriate morphologic tag for
words not found in the dictionary, based on suffix similarity with existing words.

The analyzer is able to obtain lemmata and grammar categories for a broad
range of most frequent Slovak words, including punctuation and digits, and is
successfully used in the Slovak National Corpus database.

References

1. Ëåâåíøòåéí, Â. È.: Äâîè÷íûå êîäû ñ èñïðàâëåíèåì âûïàäåíèé, âñòàâîê èçàìåùåíèé ñèìâîëîâ, Äîêë. ÀÍ ÑÑÑ�, 163, 4, (1965) 845�848.
2. http://cr.yp.to/cdb.html
3. Free Software Foundation, Inc. (1989, 1991)
4. http://www.python.org/
5. The Unicode Consortium. The Unicode Standard, Version 4.0 Boston, MA, Addison-

Wesley Developers Press, ISBN 0-321-18578-1 (2003)
6. The Unicode Consortium. Unicode Technical Report #15: Unicode Normalization

Forms. http://www.unicode.org/unicode/reports/tr15/


